870 research outputs found

    Methods for comparative ChIA-PET and Hi-C data analysis.

    Get PDF
    The three-dimensional architecture of chromatin in the nucleus is important for genome regulation and function. Advanced high-throughput sequencing-based methods have been developed for capturing chromatin interactions (Hi-C, genome-wide chromosome conformation capture) or enriching for those involving a specific protein (ChIA-PET, chromatin interaction analysis with paired-end tag sequencing). There is widespread interest in utilizing and interpreting ChIA-PET and Hi-C. We review methods for comparative ChIA-PET and Hi-C data analysis and visualization. The topics reviewed include: downloading ChIA-PET and Hi-C data from the ENCODE and 4DN portals; processing ChIA-PET data using ChIA-PIPE; processing Hi-C data using Juicer or distiller and cooler; viewing 2D contact maps using Juicebox or Higlass; viewing peaks, loops, and domains using BASIC Browser; annotating convergent and tandem CTCF loops

    Discontinuity Preserving Regularization for Modeling Sliding in Medical Image Registration

    Full text link
    Sliding effects often occur along tissue/organ boundaries. However, most conventional registration techniques either use smooth parametric bases or apply homogeneous smoothness regularization, and fail to address the sliding issue. In this study, we propose a class of discontinuity-preserving regularizers that fit naturally into optimization-based registration. The proposed regularization encourages smooth deformations in most regions, but preserves large discontinuities supported by the data. Variational techniques are used to derive the descending flows. We discuss general conditions on such discontinuity-preserving regularizers, and their properties based on an anisotropic filtering interpretation. Preliminary tests with 2D CT data show promising results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85986/1/Fessler234.pd

    Discriminative Sliding Preserving Regularization in Medical Image Registration

    Full text link
    Sliding effects often occur along tissue/organ boundaries. For instance, it is widely observed that the lung and diaphragm slide against the rib cage and the atria during breathing. Conventional homogeneous smooth registration methods fail to address this issue. Some recent studies preserve motion discontinuities by either using joint registration/segmentation or utilizing robust regularization energy on the motion field. However, allowing all types of discontinuities is not strict enough for physical deformations. In particular, flows that generate local vacuums or mass collisions should be discouraged by the energy functional. In this study, we propose a regularization energy that encodes a discriminative treatment of different types of motion discontinuities. The key idea is motivated by the Helmholtz-Hodge decomposition, and regards the underlying motion flow as a superposition of a solenoidal component, an irrotational component and a harmonic part. The proposed method applies a homogeneous penalty on the divergence, discouraging local volume change caused by the irrotational component, thus avoiding local vacuum or collision; it regularizes the curl field with a robust functional so that the resulting solenoidal component vanishes almost everywhere except on a singular set where the large shear values are preserved. This singularity set corresponds to sliding interfaces. Preliminary tests with both simulated and clinical data showed promising results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85988/1/Fessler242.pd

    Real-time prediction of respiratory motion based on local regression methods

    Full text link
    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58097/2/pmb7_23_024.pd

    2D antiscatter grid and scatter sampling based CBCT pipeline for image guided radiation therapy

    Full text link
    Poor tissue visualization and quantitative accuracy in CBCT is a major barrier in expanding the role of CBCT imaging from target localization to quantitative treatment monitoring and plan adaptations in radiation therapy sessions. To further improve image quality in CBCT, 2D antiscatter grid based scatter rejection was combined with a raw data processing pipeline and iterative image reconstruction. The culmination of these steps was referred as quantitative CBCT, qCBCT. qCBCT data processing steps include 2D antiscatter grid implementation, measurement based residual scatter, image lag, and beam hardening correction for offset detector geometry CBCT with a bow tie filter. Images were reconstructed with iterative image reconstruction to reduce image noise. To evaluate image quality, qCBCT acquisitions were performed using a variety of phantoms to investigate the effect of object size and its composition on image quality. qCBCT image quality was benchmarked against clinical CBCT and MDCT images. Addition of image lag and beam hardening correction to scatter suppression reduced HU degradation in qCBCT by 10 HU and 40 HU, respectively. When compared to gold standard MDCT, mean HU errors in qCBCT and clinical CBCT were 10 HU and 27 HU, respectively. HU inaccuracy due to change in phantom size was 22 HU and 85 HU in qCBCT and clinical CBCT images, respectively. With iterative reconstruction, contrast to noise ratio improved by a factor of 1.25 when compared to clinical CBCT protocols. Robust artifact and noise suppression in qCBCT images can reduce the image quality gap between CBCT and MDCT, improving the promise of qCBCT in fulfilling the tasks that demand high quantitative accuracy, such as CBCT based dose calculations and treatment response assessment in image guided radiation therapy

    Image Guided Respiratory Motion Analysis: Time Series and Image Registration.

    Full text link
    The efficacy of Image guided radiation therapy (IGRT) systems relies on accurately extracting, modeling and predicting tumor movement with imaging techniques. This thesis investigates two key problems associated with such systems: motion modeling and image processing. For thoracic and upper abdominal tumors, respiratory motion is the dominant factor for tumor movement. We have studied several special structured time series analysis techniques to incorporate the semi-periodicity characteristics of respiratory motion. The proposed methods are robust towards large variations among fractions and populations; the algorithms perform stably in the presence of sparse radiographic observations with noise. We have proposed a subspace projection method to quantitatively evaluate the semi-periodicity of a given observation trace; a nonparametric local regression approach for real-time prediction of respiratory motion; a state augmentation scheme to model hysteresis; and an ellipse tracking algorithm to estimate the trend of respiratory motion in real time. For image processing, we have focused on designing regularizations to account for prior information in image registration problems. We investigated a penalty function design that accommodates tissue-type-dependent elasticity information. We studied a class of discontinuity preserving regularizers that yield smooth deformation estimates in most regions, yet allow discontinuities supported by data. We have further proposed a discriminate regularizer that preserves shear discontinuity, but discourages folding or vacuum generating flows. In addition, we have initiated a preliminary principled study on the fundamental performance limit of image registration problems. We proposed a statistical generative model to account for noise effect in both source and target images, and investigated the approximate performance of the maximum-likelihood estimator corresponding to the generative model and the commonly adopted M-estimator. A simple example suggests that the approximation is reasonably accurate. Our studies in both time series analysis and image registration constitute essential building-blocks for clinical applications such as adaptive treatment. Besides their theoretical interests, it is our sincere hope that with further justifications, the proposed techniques would realize its clinical value, and improve the quality of life for patients.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60673/1/druan_1.pd
    corecore